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Abstract. Two-point correlation functions of the off-critical primary field$; 1+, are
considered in the perturbed minimal mod#fs on 13+ ¢1,3. They are given as infinite series of
form factor contributions. The form factors ¢f 1.+, are conjectured from the known results for
those of¢1 2 and¢1 3. The conjectured form factors are rewritten in a form which is convenient
for summation.

1. Introduction

Correlation functions are important tools to study quantum field theories. In many two-
dimensional models, it is known that the determinant representation is useful for non-
perturbative analysis of correlation functions [1-11].

In a class of(1 + 1)-dimensional, massive, integrable models [12-25], correlation
functions of some operators can be written as an infinite sum over intermediate states
and are analysed through the form factor bootstrap procedure [12, 13].

Recently, it has been shown that determinant representation of integral operators is
useful to sum up the infinite series in the sinh-Gordon model [26] and in the scaling Lee—
Yang model [27]. In these models, an auxiliary Fock space and auxiliary Bose fields, which
are called dual fields, are introduced. This approach was developed in [5, 28, 29]

The scaling Lee—Yang model [30] can be identified with he- 1 case of the perturbed
minimal modelM, oy 13 + ¢1.3 [31]. The purpose of this paper is to generalize the result
of [27] to arbitrary N and to show that the determinant representation is useful also in the
perturbed minimal conformal field theories.

The minimal modelM; ,y3 iS non-unitary and contain® + 1 scalar primary fields
D1.14+5s = Prov+2—s (s =0, ..., 2N + 1) with scaling dimensionsA (1,144, A1.1+s)) [32]:

2 1-
A1 14s) = —% s=0,...,2N + 1. (1.2)
The primary operatop; 1 = ¢1.2nv-2 iS the identity operator.

The ¢4 3-perturbation ofM,2y+3 is known to be integrable and is described by the
A(Zi),—type factorizable scattering theory. The mass spectrum(zﬁf theory consists ofV
scalar particles with mass

mgy = 2m sin(an/ h) a=1...,N (1.2
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whereh = 2N + 1 is the Coxeter number of the Lie algemgl\),. The two-body scattering
amplitude is given by [33]

a+b-1

SwB) =[] e (1.3)

x=|a—b|+1
step 2

where
tanh (8 + (x — Dzi/h) tanh3(B + (x + Dywi/ h)
tanh1(8 — (x — Dzi/h)tanh3(B — (x + i/ h)’

It is conjectured that the conformal primary fielgls;, become off-critical primary fields
[19]. We use the same symbeh 1., to denote the corresponding off-critical primary

(1.4)

{x}p =

operators.

Form factors of a local operatd@(x) are defined as the matrix elements between the
vacuum statévac| andn particle states characterized by particle speciés; € {1, ..., N})
and rapiditiess; ( i=1...,n)

al .y (ﬁlv ce ﬁn) = <VaC|O(0)|ﬂ1, ) ﬂl‘t)al...an' (15)
The multiparticle form factors fop, , and ¢, 3 were calculated in [14]

F&2 (1, ..., Bw) = foar.a (BL - .- ﬂn>]"[va,]"[¢a,a,<ﬂ, B) (1.6)

i<j

2 h
F&2 (B, ... ) = M(Zma,eiﬂ)fm..an Br oo o)

ma

X l_[ Va; 1_[ Casa; (Bi — Bj)- (1.7)
i<j

The explicit forms of the constanis, the functionsf;.,,. 4, (B1, ..., Bs) (A = 0, £1) and
L. (B) are given in section 2.1. Note that (1.7) gives two equivalent definitiors ef

For other operators, the explicit form of multiparticle form factors were determined only
whena; = --- = a, = 1 [19]. The explicit form for the form factors containing the other
particle species had not been known. These form factors used to be given indirectly by
using the fusion procedure. We will derive these in this paper.

After Wick rotation to the Euclidean space, the two-point correlation function of the
operatorp; 1+, andes 14+, can be represented as an infinite series of form factor contributions

(#1145 (111 (0)) = [ (VaClgr i (OIBL - Budas.a,
n= Oa =1 |(2 )

x{(Bu, - - /31|¢1 1++ (0)| vag
= ZZ FO0 (Ba, .. B Fer 5 (Bu + i, ..., B + i)

n! (271)” Faila,

x exp[ —r Z my, coshﬁj} (1.8)
=

wherer = (x*x,)¥2. In the next section, we transform (1.6) and (1.7) to forms which are
convenient to sum up the series (1.8). From the final expression, we can guess the form of
the form factors for the other off-critical primary operators. We give the conjectured form
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factors for ¢, 14+, and demonstrate that they satisfy form factor bootstrap equations. We
discuss the relation between the conjectured form factors and their known forms with all
a; = 1 given by Koubek [19].

This paper is organized as follows. In the first part of section 2, a brief review of the
form factor bootstrap equations is given. In section 2.1, the form factors (1.6) and (1.7)
are transformed to a form which is convenient for summation. In section 2.2, we give the
form factors for other primary operatogs 14,. In section 3, with the help of dual fields
which act on an auxiliary Fock space, we sum up the infinite series (1.8) to a Fredholm
determinant. Section 4 is devoted to discussion. In the appendix we give the evidence that
the proposed form factors @f; 1., satisfy the form factor bootstrap equations.

2. Form factor

To fix a notation, we briefly summarize the form factor bootstrap equations [12, 13].
The form factor bootstrap equations are axiomized in the following way.
(i) Watson’s equations:

@]
Fal ;i1 1.. a”(ﬁl’~-cvﬁi9ﬁi+17"'aﬁn)

= Saai1 (Bi — BivD F, al alﬂa, a (B Bigas Bis -y Br) (2.1)

a1a2 a(BLt 270, Bo, oo B) = Fy, anal(ﬁz,--.,ﬂmﬂl)- (2.2)
(ii) Lorentz covariance:

FO o (Bit A, B+ A) =€V (Br,.... By (2.3)

wheres(0O) is the Lorentz spin of the operat@t. The off-critical primary fields are scalar
operators :s(¢1145) =0
(iii) The kinematical residue equation:

—i |Im éFaadl d, B + i+ €, B.B1, ..., By = (1 — l_[Sadf(’B — ﬁj))Fd?mdn(ﬂl, ey Br).
j=1

(2.4)

(iv) Bound state residue equation: for a fusion proaessb — ¢, form factors satisfy
the bound state residue equation

—ilim ngdlman B+ +e, B—i0p, Bro....B) =T FS 4 (B.Br. ... B (2.5)
whered = 7 — 6 and 0¢, is the fusion angle. Let(a, b) = min(a + b, h —a — b). In the

perturbed minimal models, the fusion process occurs:fern(a, b) or ¢ = |a — b|(# 0)
and the fusion angles are [33]

0y "= (h—la—b)m/h

(2.6)
0" = (a + bym/h.
The on-shell three-point coupling constdrf}, is given by
Sup(B) ~ i(rz_b)z for g ~ 65, (2.7)
B —i05, “

Because the perturbed minimal model is non-unitary, the three-point coupling constant is
pure imaginary for the case=h% —a — b (a + b > N) [33].

The S-matrix (1.3) has a double pole gt= (a+b—2c)ri/hforc =1, ..., min(a, b)—1
which corresponds to a weak bound state b — ((@ — ¢) x ¢) x ((b — ¢) x ¢) [33].
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Corresponding to this double pole, the form factor has a simple pole at certain rapidity
difference. We do not give the explicit form of the (weak) bound state residue equations,
which can be found in [13, 14].

As was shown by Koubek [19], it is sufficient to consider the minimal fusion process
axb— a+b(a+b < N). Information about the other fusion processes are indirectly
contained in the minimal ones.

The explicit form of the minimal bound state residue equation is

_ iIGiLnOchfzdl___d (B+bri/h+e, B—armi/h, B, ..., B

=TS FS i 0 B Bro-sB)  a+b<N (2.8)
where

tan(max(a, b)xr/ h) ™"ED -1 (tan((max(a, b) + k)n/h))z

(a+b)\2 __
(Fyp )" = 21@r(a + b)w/ h) tan(min(a, b)rt/ h) tan((min(a, b) — k)t / h)

k=1
The rest of the bound state residue equations can be derived from (2.8).
(v) Cluster properties [14, 17, 18, 34]:

lim Fotue Br+ Ao B+ A, Busts oo Busn)

A—>00 at...amAm+1---Am+n

= ¢11+‘ ( s m)F¢11+\ ( m+1s «++5 Pm n). 29
(¢1,1+_§) al Gm IB '3 Ap1---Amn ﬂ +1 ,3 + ( )

Here (¢1.1+5) is the vacuum expectation value of the off-critical primary operatof,
[34]. We choose the normalization as follows:

(Pr145) = 1. (2.10)

2.1. Form factors fokp; 2 and ¢1 3

As was mentioned in the previous section, the form factorspigr and ¢1 3 are given in
the form (1.6) and (1.7) respectively.
The auxiliary objectsfs.q,. ., (B1. - - ., By) are defined by

do do,,—
o (Bro o vs ) = (—1'12 / o f 1
Ty s Ba)

al(/sl) 27T| 27T|
n—1 n
X nn(oaj (Oll ﬁ] Hsmf(oc, -
i=1j= i<j

x exp(k(nX: o — Z ﬂ,)) A=0,+1 (2.11)
i=1 j=1

wherel',(B) is the contour enveloping the poings+ (a — 2/)xi/h,1 =0,1,...,a and

4 lCosh1 + (a —2j)wi/h
¢a(B) = 2“ (Pt taz 2/l (2.12)
]’[FO smhé(,B +(a—2j)mi/h)’
Note that our f;.4, 4,(B1, ..., Bx) corresponds to Smirnov's_, (B1, ..., Bu)a;..a, [14].
Although the integration contour,, (8,) is absent in the expression (2.11), all rapidities
are on the same footing iff..., .. See (2.36).
The functiong,,(B8) is defined by

Can(B) = Wapn(BYET™ (B) (2.13)
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where
211125 sinh3 (B + (la — b| — 2j)mi/ h)
[T coshd(8 + (a + b — 2j)xi/h)

The phase ofW,,(8) is chosen such that the cluster equation (2.9) holds. The minimal
two-body form factorF "™ (8) is given by

Waur(B) = (—1)@+min(a.b)+1

(2.14)

a+b—1

FR™@y = ] F™®). (2.15)
e

Here F(™M" () is a building block of the minimal two-body form factor:

,  dk sinP(Bk/2r) cosh(1/2 — x/ h)k coshk/ h)
(min) _ -
E(B) = N exp<4/0 k cosh(k/2) sinhk ) (2.16)
where = 7i — B and a normalization constant, is chosen as
N - exp<2foo d_k coshk/2) — cosh1/2 —_x/h)k cosk(k/h)). 2.17)
o k coshk/2) sinhk

FMM(8) has no poles or no zeros in the strip<dm g < 2. Fl(mi”)(ﬂ) has a single zero
atg =0.
The constant, is defined by

: 1/2a-1
b, = i (%) []sine/m. (2.18)
aa =1

Then the functions (1.6) and (1.7) with (2.11), (2.13) and (2.18) satisfy the form factor
bootstrap equations and are indeed form factorspigr and ¢, 3 respectively [14].

In order to transform the form factors into forms suited for summation, we rewrite
frar.a,(B1s - - -, Ba) in terms ofr; = € andx; = €%. Letw = exp(2wi/h). We have

B n L dtl
N S A Rl
j=1 Yay (¥1)
dl ln—l n n—1 n—1
-
"/ o [ [[ o @oxp [Ta? = [T (2.19)
Ya,_q (Xn-1) i=1j=1 i<j i=1
where the contou, (x) envelops the pointsw®/?~ for/ = 0,...,a. Fort = ¢ and

x = €%, the functiong, (t, x) is defined byy, (@ — B) = 2tx.(t, x). The explicit form of
@q(t, x) is given by

[15=1 @ + xe*/?7)

a(t, X) = =% — 2.20
% (t .X) H?:O(t _xwa/Z—j) ( )
With help of a Vandermonde determinant
n—1
[T02 - = dett? *1cijns (2.21)

i>]j

we can write (2.19) in the following form:

Friarea, Br - Bo) = (=D DER2 VT T detK ), 1< jen1 (2.22)
j=1
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where
dr
A _ 2 +1—1 L. _
K avij = /y . 2m J H‘Pak(f Xk) i,j=1,...,n—1 (2.23)
The contoury,, (x;) envelops the points = x;w%/?~ for1 =0, ..., a;.

Following the procedure of [14], we transform the determinankgf , (2.23). Let us
consider the properties of (2.23). The pole structure of the integrand is determined by

[ ]a . x0. (2.24)
k=1
The functiong,, (¢, xx) (k # i) has no pole in the contouyr, (x;). Thus the value of the
integral does not change ¢f, (¢, x;) (k # i) is replaced by
" — (—1)“kx,’g
(=D@x] — (—Dax

Then we have

dr (1" — (=D)*x})@a, (t, x)
K7 i :f o 121 (1, xl)l_[ k) Pa
Ya; (xi) T[I

7 Pay (1, Xk)- (2.25)

(=Doxl — (—Dax;

k#i
dt 2]+A 1
ay t
g( 1)a'x ( l)akxk ya‘_(x‘) Hw ( Xk) ( l)a,
(2.26)
where

Yalt, x) = <th — (=D*x")ga (1, x)

h—a—1
= l_[(t+xa)”/2_’) 1_[ (1 + xa"=9/277y, (2.27)

Jj=
Now the integrand in the integral oveis regular at the point = 0 and has no singularities
except for the points;0%/2~! for I = 0,...,a;. Thus we can replace the contoyr (x;)
by a circle whose radius is larger than|. Then we have

n—1 n

det k), , . )icijen1=]] [] ((=D“x}— (=D%x})"det(K}, , .)i<ijen-1 (2.28)
i=1j=1(i)
where
5 dr (2j+i-1 1
Kil...a,L;ij = 27_[ A HWak(t xk)w- (229)

On the contour it holds that| > |x;|. So we can expan@” — (—1)%x")~! as follows:

1

[0¢]
DT T D (e ha (2.30)
t" — (=D)%x;

Note that after substitution of the above equation into the integral (2.29), termg With
vanish because the highest degree of the integramdsismaller than—1. The number of
non-vanishing terms is at most— 1:

= dr
R o Z( 1y¢ita=D hia= 1)% St (2041 hql_[vfak(t . (231)
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The sum overg in the above equation can be interpreted as the matrix product of two

matrices of dimensiom — 1. The determinant oﬂ?jlma” becomes a product of two
determinants:

(g—1) _h(g—1
det(Kjl a 1])1<ij<n—1=del((_1)al(q )x; “ ))léi,qénfl

xdet(fﬁ a AL th‘/fak(t,Xk))
— 1_[(( 1)a,x _( 1)a/xh)det<\¢ Z(jTI 2j+r—1—hi l_ll/laA(t Xk))

1<q, j<n—1

i>j 1<i, j<n—1

(2.32)

To make the meaning of the determinant in (2.32) clear, it is useful to introduce a notion

of ‘generalized’ elementary symmetric polynomials. Recall that the elementary symmetric
polynomials withm variables are defined by

]_[(t+zk) =Y "o @ ). (2.33)

keZ

It holds thatak(’") =0if k < 0,k > m. Similarly, let us define generalized elementary
symmetric polynomials by

H Y (6,250 = D 1" "R Eg gi(x1, ). (2.34)
keZ
Using the definition off, (z, x) (2.27), we can express the generalized elementary symmetric

polynomial in terms of the ordinary elementary symmetric polynomials with- 2)n
variables:

a;—1
((h—2)n) 2-1 2-2 —a1/2+1
Eupoapk(X1, ..o, Xn) = 0} @™ xy, P 2xy, L w P g
hfalfl
h—ajp)/2—1 h—ay)/2-2 —(h—a1)/2+1
wh—a/ X1, wh—a/ X1y ees @ (h—ay)/ X1,
a,—1
W2 Ly /22y a2l
h—a,—1
w(h*au)/zflxn’ w(h*an)/Z*an’ e w*(h*ﬂu)/ZJrlxn

Note thatE,, ,.x =0fork <0 ork > (h — 2)n.

For N = 1, the generalized elementary symmetric polynomials coincide with the
ordinary symmetric polynomials.

The determinant can be written as follows:

dar ooy
det(f ﬁtzjﬂ o l_[‘pak(t’xk) = det(Ey,. a,:hn—i)—20—j)+2)1<i, j<n—1
k=1

1<i, j<n—1

= det(Eal...a,l;hi—2j+k)1<i,j<n—l- (235)
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Recall that the form factor in the scaling Lee—Yang modék 1, » = 3) was proportional
to de'(o(’)zjﬂ)lg,-,jg,,,l [14, 15]. Thus, the expression (2.35) is the natural generalization
of the N =1 case.

Then, we have a representation £f,, ,,:

Friara,(Brs - B 2"<"+1>/21"[ i l1'[(( D! — (—=1x)
i>j
Xde‘(Eal...a”:hi72j+)L)1<i,j<nfl A=0,£1 (2.36)

As was shown in [26, 27], in order to represent two-point correlation function as a Fredholm
determinant, it is necessary to transform the determinant of the matrix of dimensidn
into a determinant of a matrix of dimensian

Let us consider the following matrix:

Mélma,,;ij (xl, ey xn) = Eal...un;hi—2j+k—h+l(xla ey xn) i, J = 1, (B (237)
For A =0 or 1, it holds that

ML = Euy a8in ji=1....n A=0,1 (2.38)

ai..an;1j —

and M*+ (+1(+1 = Ear.aihi-2j+n for 1 <i, j <n—1. Thus we have

ai.. an

de‘(M}Hrl )l <i,j<n — Eal...a,,;Adei(Eal...a,l;/1[—2j+k)l<i,j<n—l A= oa 1 (239)

ai...ap;ij

For A = —1, it holds that

My = Eay.ay:-2n-10n.j j=1,...,n, r=-1 (2.40)
and Mt = Eqy a,mi—2j+ for 1<, j <n—1. Thus we have
de'(MaAfha l,j)léi,jén = Euy..ap:(h—2n—10€CEy, a,:hi-2j+2)1<i, j<n—1 A=-L (2.41)
Note that
Ealu.a,,;O =1 (242)
" sin(a;jm/ h) Zcos{n/h)
E, o.1=2c0Sw/h —/ = 0 2.43
il g/ ),; Sinor ) Zm , (2.43)
Ealma,,;(hfZ)nfl(-xl’ e xn) = (1_[ x}zZ) Eal...a,,;l(x]?ls e xn_l)~ (244)
j=1

Combining the above results with (1.6) and (1.7), the form factorg:6f.; (s = 1, 2) can
be rewritten as

;;“;;wl,...,ﬁn)=f&;al_.an(ﬂl,...,ﬂn)<1'[va,)1"[;%(;8, B)  s=12 (2.45)

j=1 i<j

whereA =1fors =1, andh. =2 orh — 2 fors = 2 and

friaroa B, - B 2"<"+1>/21"[x" k]‘[(( Déx} — (=DYx))rdetM), , )1<i j<n-

l>j

(2.46)
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The above auxiliary object has an integral representation similgy {@.11):

~ dorq do,,
a ...an( PRI n)=/ .- f a,(al
Fran-an (B2 § Fuy (B 27T Fup (B) 27T HH‘”

ag i=1j=

X ﬁsinh(a,- — ;) exp<x Z(aj - ,3]-)>. (2.47)
j=1

i<j

In contrast to (2.11), this expression treatsgalbn equal footing. The equivalence of (2.47)
to (2.46) can be proven in exactly the same way as for the cagg 0f,,

2.2. Form factors forp; 1+s

Let us analyse properties of (2.46) more closely.
Except fora = 1,...,2N, detM) , are trivial: ded , = 6,0

From the def|n|t|on of the generallzed elementary symmetrlc polynomials (2.34), we
can show that

n
Eal...a,,;k(xla e xn) = <l_[le'1_2) Eal...a,l;(h—Z)n—k (xl—l’ e Xy, ) (248)
j=1

The matrixM}~* "is ‘isomorphic’ to the matrixy/}. , in the sense

.ay ay...ay

Mé‘l )‘a G X)) = (Hxh 2> 1y (1) (11— j)(xl , ...,x;l). (2.49)

Further, it holds that

(]_[x;k)det(M;l oL X)) = (]_[ A ")det(Mjl A (XL X)) (2.50)
i=1 j=1

Thus, we have

ﬁt—k;al...an (,31’ DR ﬂn) = f;»;ul.,.u,l (,31, ey ,Bn) (251)

It is now easy to guess the form of the form factors for the general off-critical primary
fields ¢1145 (s =0, ..., 2N + 1). Suppose that the form factors of 1., are given by

n

(?;1 1;; (,31, ey ,Bn) = fs;al.“a,, (/317 D) ﬁn)(l_[ va,-> 1_[ ;-a,-aj (/31 - ﬁj) (252)

j=1 i<j

where f;.., ... iS given by equation (2.46)

fara, B, - ﬂ)—Z”(”“)/ZHX" 3]‘[(( Dex! = (=D%x)) T detM), i )1<i.j<n

=1 i>j
(2.53)

andM; i) is given by equation (2.37)
M i1 X0) = Eaygphi-gjis—net(ite o %) i j=1...n. (2.54)

Recall that the definitions of the constant and the functiong,,(8) are given by
equation (2.18) and equation (2.13) respectively.
In the appendix, we demonstrate that (2.52) satisfies the form factor bootstrap equations.
The form of the form factor bootstrap equations does not depend on the operator.
We need to identify the solution with some operator. The justification of the operator
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identification in (2.52) is the following: From equation (2.51), it holds that,, =
¢11+1—s. FOrs =0 ors = 2N 41 case, the off-critical primary field is the identity operator
and the above form factors give trivial solution. koe 1, 2, 2N — 1, equation (2.52) yields
the known results [14]. For general let us consider the special case of (2.52):

FA (Br, .oy Bo) i= FP7 (B, B (2.55)
The explicit form of the form factors 01142 for a3 = --- = a, = 1 can be found in
[19]. We conjecture that (2.55) has another equivalent expression:
F’f’l,lJrA (1317 e, ,Bn) — (Zvl)n[s]wl/zdet([s +2i — 2j]w1/202(?lj)1<i,j<n—1
n F(min) . — B
y 1 Bi—B)

__ = Bi) | (2.56)
()C,' +.Xj)S|nh§(,3,' — /Bj + 27'”/]’1) Slnhi(,B,' — ,Bj — 27T|/h)

i<j
where

"2 — ™% sin(nw/h)

[l = o1 = g 1y (2.57)

We checked that both (2.55) and (2.56) satisfy the same kinematical residue equations and
give the same results for small If we sets = 2k, (2.56) agrees with the Koubek’s results
[19]. The scaling dimensions of the operators were checked numerically for amiall
[35]. These results completely agree with our operator identification.
Thus the function (2.52) gives the form factor #11,,. Equation (2.52) is one of the
main results of this paper.
For later convenience, we further rewrite the form factor (2.52) as follows:

2T s . Caa (B = B)
Flﬁ"”a” (Brs--. . Bn) =2 (E Vaf'x} )det(Mal un) 1_[ (XX )= 2)/2 (2.58)
where
Zan(B) = Wapn(BYET™ (B) (2.59)
2W (8 — B)

Chhyr — i = O WaB=p) x=ey=¢. (260)

The explicit form of W, is given by
ila=bl 21115 sinh3 (B + (la — b| — 2j)mi/h)
sinh3h(B + (a + b)xi/h) T2 coshi(B + (a+b — 2j)mi/h)

War(B) = (2.61)

In the next section, using the expression (2.58), we sum up the two-point correlation function
(1.8) into a Fredholm determinant of an integral operator.

3. The determinant representation

We can write correlation functions using a Fredholm determinant with the help of auxiliary
operators. We only give the final result which is straight generalization of the case of the
sinh-Gordon model [26] and the scaling Lee—Yang model [27].

The two-point correlation functions can be written as

(1145 (X)P1.115(0)) = (O|det] + U“*7)|0) (3.1)
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where an integral operator is defined by

~ e , dr? B e gt
U(S§S) , — 2 -1 (h—s—s'+1)/2 : 1°2 ) 3.2
(7, 2) = Zhm = (y2) 2ri)2 (t112)" — 112+ y2 12 + 72 (82)
The auxiliary qguantum operators are defined as
N
D(y) =D Pra(y) + 3Po(y) (3.3)
a=1
N
e =3 " (—1)* exp[®ou () + Paa () — rma(y + y /2] (3.4)
a=1

with r = (x*x,)Y/2. Here®;,(y) are mutually commuting operators given by the auxiliary

operators: ®o, (y) = qoa(y) + poa(y) and @, (y) = qja(y) + p-ja(y) (j = 1,2). The
operatorsp;,(y) andg;,(y) act on the canonical Fock space in the following way

(Olgja(y) =0 Pja(y)|0) =0 j=012 a=1...,N. (3.5)
Non-zero commutators are given by
[P1(3): 914 ()] = [p2a(»). G20 (2)] = 109((y* + 22V (. 2)) (3.6)
La(109(y/2))

[Poa (), qon(2)] = 2log . (3.7

(y2)h=2/2(y? — z2)

4. Discussion

In this paper, we have considered the two-point correlation functions in the perturbed
minimal modelsM2 oy 43 + ¢1.3.

It is known that the operator content of the perturbed model is same as the unperturbed
models [19]. The model containg + 1 off-critical primary fieldseg; 1.

We have determined the explicit form of the form factors for the off-critical primary
fields ¢1145 (2.52). The information about the operaipr .., is carried by the function

fS;ﬂl...a” (2'47)'

~ dog do, 5 2
fs;al...a,, (,819 ey IBn) = / PSR / - §0a/ (Ol,' - ﬁ)
LBy 200 Jr, ) 2T ,11,11 !

X l_[Sinf‘(a,- —aj) exp<s Z(aj — ,Bj)). (4.1)
j=1

i<j

This representation reveals the remarkably simple structure of the operator content of the
perturbed minimal model.

Recall that the perturbed minimal model can be described as the restriction of the sine-
Gordon model at the coupling constagft/8r = 2/(2N + 3) [14]. In the restricted sine-
Gordon model, the off-critical primary fielgs 1.+, corresponds to the following exponential
operator:

Peol2p (4.2)

where ¢ is the sine-Gordon field an® is the projection operator into the soliton-free
sector [14, 19]. If we use the representation (2.47) (not (2.46)) and replatk By

£ = wg?/(8r — g?), the form factor (2.52) becomes the breather form factor for the
exponential operator&€?/2 in the unrestricted sine-Gordon model. The expression (2.56)
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remains valid by this replacement and it gives the form factors for the lightest breathers. It
can be obtained from the form factors of the exponential operator in the sinh-Gordon model
by analytic continuation in the coupling constant [24].

Using a representation of the form factor (2.58), we have obtained determinant
representation for the two-point correlation function of off-critical primary fields (3.1), which
is a natural generalization of that of the scaling Lee-Yang model [27].

It would be very interesting if one could extract some non-perturbative features from
the determinant representations (3.1).
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Appendix

In this appendix, we collect some relations which are helpful to show that the function
(2.52) satisfies the form factor bootstrap equations (i)—(v).
There is no difficulty in proving (i) Watson’s equation and (ii) Lorentz covariance.
Note that the minimal building block of the two-body form factef™™ (8) (2.16) has
a property

F™(B) = {x} 5 F™™ (=) (A1)
F™ (8 + 211) = F™ (= ). (A2)
Then the minimal two-body form factoF "™ (8) (2.15) satisfies Watson’s equation for
n=2:
F™(B) = San(BYF " (—B) (A3)
Fu " (B + 21i) = F,;" (=B). (A.4)
Using these relations, one can easily check that (2.52) obeys Watson'’s equations for general
n.
(iii) Kinematical residue equation: to show that (2.52) satisfies the kinematical residue

equation, we need the following relations.
The residue ot,,(8) at 8 = i is given by

a—1
—ilim eguq (i +e) = (=124 FMO (i) T [ sin2(jm/ h). (A.5)
€e— =1
Using a representation of, (2.47), one can show that

fk;uadl...dn(ﬁ+ni’ﬁ’ﬁl’ ’ﬂn) = W

x|:1_[<pdj(/3 — B + i —ani/h)es (B — B; +ami/h)
j=1

—[ 104 B — B +7i+ani/mes B — B - ani/h)}fx;dl...dn (Br. - Bo)-
j=1

(A.6)
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With the choice of the normalization (2.17), the building block (2.16) satisfies
FM™Y (B + i) F™ (B) = — coshi(B — (x — Lyzi/ h) coshi(B — (x + Dmi/h)
x sinh(B + (x — i/ h) sinh3(B + (x + D/ h). (A7)
Using this relation, we can show that
Caa (B + 71)Caa(B) = ¢, (B + dri/ h)g, (B + i — i/ h)
= oY (B + ami/ W) (B + wi — ami/h). (A.8)
It holds that
wi+ami/h —ami/h
o T gy a1} ~ 4 @9

Making use of these relations, we can show that the function (2.52) satisfies the
kinematical residue equations.

(iv) Bound state residue equation: in order to verify that (2.52) satisfies the bound state
residue equation for the minimal fusion process b — (a +b) (a+b < N), we need the
following relations:

—i Iimoeﬂ;abdl___dn (B+bri/h+e,B—ani/h, Bi. ..., By
€—>

= (D" pasty froarvrdrd, B: Bro - B) [ [ 04, (B — Bi + (b — a)mi/ )
j=1

(A.10)
where
e . [1/1 cosjm/h)
a = - A% - h) = ]— A.11
fa =1 7§ 271" (@ —ami/h) [1i_1sinGim/ h) ( )
It holds that
do ) do . do’ , .
yg—.%b)(a) =i gy = f ——@a(o — ari/h) yﬁ (e +bri/h).  (Al2)
2ri 2ri 27l
The functiong,,(8) satisfies a bootstrap equation:
Cad(B + b7i/ ) Ca(B — ami/h) = =g (B + (b — )i/ h)@ipya(B). (A.13)
There is a relation among constants:
FMmO (i) .
(a+b)(a+b) (min) H 2
T ——(F,, ((a+Db)mi/h))
F&™ (i) F™ ey
2a+2b—1
-1 1
x=2max(a,b)+1 2h 2h )
step 2

D) i
Zl—lfféﬁﬁ(afb) sin(jz/h) v,v, "
T[54 cosjm/h)  Viatn) ‘

With the aid of these relations, one can prove that the function (2.52) satisfies bound
state residue equations.

(v) Cluster properties: finally we analyse cluster properties (2.9).

For 8 — 400, the building block of the minimal two-body form factor behaves as

FMn(g) = _‘l‘elﬁl N (A.15)

1 E™ (@ + bymi/h) = T4
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Therefore, for8 — oo,

tan(B) = (=1)"H3€" + - (A.16)
and forg — —oo,

(B = (D e P 4 ... (A.17)
Let us consider the larga limit of

M* (€ x1, .. €%, Xty s X)) (A.18)

a1...Q Ayl Amin
Similar to the case of the ordinary elementary symmetric polynomials [17, 18], the leading
behaviour of the generalized symmetric polynomials is determined by the highest degree
term.
If k< (h—2)m,

2 (€2x1, € X, X1y s Xngm) ™~ e]‘AEalmam;k(xl, e Xm). (A.19)

Ealu-amtlux+1~~~am+u,
If k> (h—2)m,

E e(h—Z)mA

alma,,,a,,,_,_l...a,n_,_,,;k(eAxls ey eA-xmv Xm+1s o« v -mern) ~

XEal...a,,,:(h—Z)m ()Cl, e xm)Eam+1...an,+,,;k—(h—2)in (xm+1’ B xm+n)

m

h—2)mA h—2

= = e( om ( | | X; )Ea,,,+1...am+n;k(h2)m (Xmt1s - - s xm+n)~ (AZO)
j=1

Then
deKM)\ (eAxla RN eAxm7 Xm41s -+« xm+n))

aiz...amAm+1---Am+n
= del(Eal...ama,,(+1...am+,l;hi72j+)wh+1(eAxls ceey eAxmy Xm+1s o« v xm+n))1<i,j<m+n

~ e Ey. apaporamonhi—2j+1—nt1(€ X1, oo €8 X)) 1<i j<m

m
(h—2)mn A (h—2)n
xXe < | | )Cj )

j=1

Xde‘(EamH.“amﬂ,;h(i—m)—2(j—t71)+A—h+l(xm+la R xm+11))1n+1<i.j<m+n

= exp|:<(h — D+ mT_l) I A) mA:| (nx;hZ)n>
j=1

xdetM) , (x1,...,x,))de(M) Kty - - s Xman))- (A.21)

Am+1---Am+n
These results allow us to verify that the functions (2.52) satisfy cluster equation with
normalization{¢ 1+s) = 1.
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